Waves, the Wave Equation, and Phase Velocity

What is a wave?

Forward $[f(x-v t)]$ and backward [f($x+\mathrm{v} t)$] propagating waves

The one-dimensional wave equation

Wavelength, frequency, period, etc.

Phase velocity Complex numbers
Plane waves and laser beams Boundary conditions
Div, grad, curl, etc., and the 3D Wave equation

Prof. Rick Trebino Georgia Tech

What is a wave?

A wave is anything that moves.

To displace any function $f(x)$ to the right, just change its argument from x to $x-a$, where a is a positive number.

If we let $a=\mathrm{v} t$, where v is positive and t is time, then the displacement will increase with time.

So $f(x-v t)$ represents a rightward, or forward, propagating wave.

Similarly, $f(x+v t)$ represents a leftward, or backward, propagating wave.
v will be the velocity of the wave.

The one-dimensional wave equation

The one-dimensional wave equation for scalar (i.e., non-vector) functions, f :

$$
\frac{\partial^{2} f}{\partial x^{2}}-\frac{1}{\mathrm{v}^{2}} \frac{\partial^{2} f}{\partial t^{2}}=0
$$

where v will be the velocity of the wave.
The wave equation has the simple solution:

$$
f(x, t)=f(x \pm \mathrm{v} t)
$$

where $f(u)$ can be any twice-differentiable function.

Proof that $f(x \pm v t)$ solves the wave equation

Write $f(x \pm \mathrm{vt})$ as $f(u)$, where $u=x \pm \mathrm{vt}$. So $\frac{\partial u}{\partial x}=1$ and $\frac{\partial u}{\partial t}= \pm \mathrm{v}$
Now, use the chain rule: $\quad \frac{\partial f}{\partial x}=\frac{\partial f}{\partial u} \frac{\partial u}{\partial x} \quad \frac{\partial f}{\partial t}=\frac{\partial f}{\partial u} \frac{\partial u}{\partial t}$
So $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial u} \Rightarrow \frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} f}{\partial u^{2}}$ and $\frac{\partial f}{\partial t}= \pm v \frac{\partial f}{\partial u} \Rightarrow \frac{\partial^{2} f}{\partial t^{2}}=v^{2} \frac{\partial^{2} f}{\partial u^{2}}$

Substituting into the wave equation:

$$
\frac{\partial^{2} f}{\partial x^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} f}{\partial t^{2}}=\frac{\partial^{2} f}{\partial u^{2}}-\frac{1}{v^{2}}\left\{v^{2} \frac{\partial^{2} f}{\partial u^{2}}\right\}=0
$$

The 1D wave equation for light waves

$$
\frac{\partial^{2} E}{\partial x^{2}}-\mu \varepsilon \frac{\partial^{2} E}{\partial t^{2}}=0
$$

where E is the
light electric field

We'll use cosine- and sine-wave solutions:
or

$$
\begin{gathered}
E(x, t)=B \cos [k(x \pm \mathrm{v})]+C \sin [k(x \pm \mathrm{vt})] \\
\downarrow \\
k x \pm(k \mathrm{v}) t \\
\downarrow \\
E(x, t)=B \cos (k x \pm \omega t)+C \sin (k x \pm \omega t)
\end{gathered}
$$

where:

$$
\frac{\omega}{k}=\mathrm{v}=\frac{1}{\sqrt{\mu \varepsilon}}
$$

The speed of light in vacuum, usually called " C ", is $3 \times 10^{10} \mathrm{~cm} / \mathrm{s}$.

A simpler equation for a harmonic wave:

$$
E(x, t)=A \cos [(k x-\omega t)-\theta]
$$

Use the trigonometric identity:

$$
\cos (z-y)=\cos (z) \cos (y)+\sin (z) \sin (y)
$$

where $z=k x-\omega t$ and $y=\theta$ to obtain:

$$
E(x, t)=A \cos (k x-\omega t) \cos (\theta)+A \sin (k x-\omega t) \sin (\theta)
$$

which is the same result as before,
For simplicity, we'll

$$
E(x, t)=B \cos (k x-\omega t)+C \sin (k x-\omega t) \quad \begin{aligned}
& \text { just use the forward- } \\
& \text { propagating wave }
\end{aligned}
$$

as long as:

$$
A \cos (\theta)=B \quad \text { and } \quad A \sin (\theta)=C
$$

Definitions: Amplitude and Absolute phase

$$
E(x, t)=A \cos [(k x-\omega t)-\theta]
$$

$$
\begin{aligned}
& A=\text { Amplitude } \\
& \theta=\text { Absolute phase (or initial phase) }
\end{aligned}
$$

Absolute

 phase $=0$

Definitions

Spatial quantities:

The k-vector: $k=2 \pi / \lambda$
The wave number: $\kappa=1 / \lambda$

The angular frequency: $\omega=2 \pi / \tau$ The frequency: $v=1 / \tau$

The Phase Velocity

How fast is the wave traveling?

Velocity is a reference distance divided by a reference time.

The phase velocity is the wavelength / period: $\mathrm{v}=\lambda / \tau$
Since $v=1 / \tau$:

$$
v=\lambda v
$$

In terms of the k-vector, $k=2 \pi / \lambda$, and the angular frequency, $\omega=2 \pi / \tau$, this is:

$$
\mathrm{v}=\omega / k
$$

Human wave

A typical human wave has a phase velocity of about 20 seats per second.

The Phase of a Wave

The phase is everything inside the cosine.

$$
E(x, t)=A \cos (\varphi), \text { where } \varphi=k x-\omega t-\theta
$$

$$
\varphi=\varphi(x, y, z, t) \text { and is not a constant, like } \theta \text { ! }
$$

In terms of the phase,

$$
\begin{aligned}
\omega & =-\partial \varphi / \partial t \\
k & =\partial \varphi / \partial x
\end{aligned}
$$

And

$$
\mathrm{v}=\frac{-\partial \varphi / \partial t}{\partial \varphi / \partial x}
$$

This formula is useful when the wave is really complicated.

Complex numbers

Consider a point, $P=(x, y)$, on a 2D Cartesian grid.

Let the x-coordinate be the real part and the y-coordinate the imaginary part
 of a complex number.

So, instead of using an ordered pair, (x, y), we write:

$$
\begin{aligned}
P & =x+i y \\
& =A \cos (\varphi)+i A \sin (\varphi)
\end{aligned}
$$

where $i=(-1)^{1 / 2}$

Euler's Formula

$$
\exp (i \varphi)=\cos (\varphi)+i \sin (\varphi)
$$

so the point, $P=A \cos (\varphi)+i A \sin (\varphi)$, can be written:

$$
P=A \exp (i \varphi)
$$

where

$$
\begin{aligned}
& A=\text { Amplitude } \\
& \varphi=\text { Phase }
\end{aligned}
$$

Proof of Euler's Formula $\exp (i \varphi)=\cos (\varphi)+i \sin (\varphi)$

Use Taylor Series: $\quad f(x)=f(0)+\frac{x}{1!} f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\ldots$

$$
\begin{aligned}
& \exp (x)=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \\
& \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}+\ldots \\
& \sin (x)=\frac{x}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}+\ldots
\end{aligned}
$$

If we substitute $x=i \varphi$ into $\exp (x)$, then:

$$
\begin{aligned}
& \exp (i \varphi)=1+\frac{i \varphi}{1!}-\frac{\varphi^{2}}{2!}-\frac{i \varphi^{3}}{3!}+\frac{\varphi^{4}}{4!}+\ldots \\
& =\left[1-\frac{\varphi^{2}}{2!}+\frac{\varphi^{4}}{4!}+\ldots\right]+i\left[\frac{\varphi}{1!}-\frac{\varphi^{3}}{3!}+\ldots\right] \\
& =\cos (\varphi)+i \sin (\varphi)
\end{aligned}
$$

Complex number theorems

$$
\text { If } \exp (i \varphi)=\cos (\varphi)+i \sin (\varphi)
$$

$$
\begin{aligned}
& \exp (i \pi)=-1 \\
& \exp (i \pi / 2)=i \\
& \exp (-i \varphi)=\cos (\varphi)-i \sin (\varphi) \\
& \cos (\varphi)=\frac{1}{2}[\exp (i \varphi)+\exp (-i \varphi)] \\
& \sin (\varphi)=\frac{1}{2 i}[\exp (i \varphi)-\exp (-i \varphi)] \\
& A_{1} \exp \left(i \varphi_{1}\right) \times A_{2} \exp \left(i \varphi_{2}\right)=A_{1} A_{2} \exp \left[i\left(\varphi_{1}+\varphi_{2}\right)\right] \\
& A_{1} \exp \left(i \varphi_{1}\right) / A_{2} \exp \left(i \varphi_{2}\right)=A_{1} / A_{2} \exp \left[i\left(\varphi_{1}-\varphi_{2}\right)\right]
\end{aligned}
$$

More complex number theorems

Any complex number, z, can be written:

$$
z=\operatorname{Re}\{z\}+i \operatorname{Im}\{z\}
$$

So
and

$$
\operatorname{Re}\{z\}=1 / 2\left(z+z^{*}\right)
$$

$$
\operatorname{Im}\{z\}=1 / 2 i\left(z-z^{*}\right)
$$

where z^{*} is the complex conjugate of $z(i \rightarrow-i)$
The "magnitude," $|z|$, of a complex number is:

$$
|z|^{2}=z z^{*}=\operatorname{Re}\{z\}^{2}+\operatorname{Im}\{z\}^{2}
$$

To convert z into polar form, $A \exp (i \varphi)$:

$$
\begin{aligned}
& A^{2}=\operatorname{Re}\{z\}^{2}+\operatorname{Im}\{z\}^{2} \\
& \tan (\varphi)=\operatorname{Im}\{z\} / \operatorname{Re}\{z\}
\end{aligned}
$$

We can also differentiate $\exp (i k x)$ as if the argument were real.

$$
\frac{d}{d x} \exp (i k x)=i k \exp (i k x)
$$

Proof :

$$
\begin{aligned}
\frac{d}{d x}[\cos (k x)+i \sin (k x)] & =-k \sin (k x)+i k \cos (k x) \\
& =i k\left[-\frac{1}{i} \sin (k x)+\cos (k x)\right]
\end{aligned} \text { But }-1 / i=i, \text { so: } \quad=i k[i \sin (k x)+\cos (k x)] \$
$$

Waves using complex numbers

The electric field of a light wave can be written:

$$
E(x, t)=A \cos (k x-\omega t-\theta)
$$

Since $\exp (i \varphi)=\cos (\varphi)+i \sin (\varphi), E(x, t)$ can also be written:

$$
E(x, t)=\operatorname{Re}\{A \exp [i(k x-\omega t-\theta)]\}
$$

or

$$
E(x, t)=1 / 2 A \exp [i(k x-\omega t-\theta)]+c . c .
$$

We often write these expressions without the
$1 / 2, \mathrm{Re}$, or $+c . c$.
where "+ c.c." means "plus the complex conjugate of everything before the plus sign."

Waves using complex amplitudes

We can let the amplitude be complex:

$$
\begin{aligned}
& E(x, t)=A \exp [i(k x-\omega t-\theta)] \\
& E(x, t)=\{A \exp (-i \theta)\}\{\exp [i(k x-\omega t)]\}
\end{aligned}
$$

where we've separated the constant stuff from the rapidly changing stuff.

The resulting "complex amplitude" is:

$$
\underset{\sim}{E}=A \exp (-i \theta) \quad \leftarrow(\text { note the } " \sim ")
$$

So:

$$
\underset{\sim}{E}(x, t)=\underset{\sim}{E} \operatorname{Exp}^{\exp }(k x-\omega t)
$$

As written, this entire field is complex!

How do you know if E_{0} is real or complex?
Sometimes people use the "~", but not always. So always assume it's complex.

Complex numbers simplify waves:

Adding waves of the same frequency, but different initial phase, yields a wave of the same frequency.

This isn't so obvious using trigonometric functions, but it's easy with complex exponentials:

$$
\begin{aligned}
& \underset{\sim}{E}{ }_{\text {tot }}(x, t)={\underset{\sim}{E}}_{E} \exp i(k x-\omega t)+{\underset{\sim}{E}}_{\underset{2}{E}} \exp i(k x-\omega t)+\underset{\sim}{E} \underset{3}{ } \exp i(k x-\omega t) \\
& =\left(\underset{\sim}{E}+{\underset{\sim}{2}}_{2}^{E}+\underset{\sim}{E}\right) \operatorname{expi}(k x-\omega t)
\end{aligned}
$$

where all initial phases are lumped into E_{1}, E_{2}, and E_{3}.

${\underset{\sim}{0}}^{E_{0}} \exp [i(k x-\omega t)]$ is called a plane wave.

A plane wave's contours of maximum field, called wave-fronts or phase-fronts, are planes. They extend over all space.

Wave-fronts are helpful for drawing pictures of interfering waves.

A wave's wavefronts sweep along at the speed of light.

A plane wave's wave-fronts are equally spaced, a wavelength apart.

They're perpendicular to the propagation direction.

Usually, we just draw lines; it's easier.

Localized waves in space: beams

A plane wave has flat wave-fronts throughout all space. It also has infinite energy. It doesn't exist in reality.

Real waves are more localized. We can approximate a realistic wave as a plane wave vs. z times a Gaussian in x and y :

$$
\underset{\sim}{E}(x, y, z, t)=\underset{\sim}{E} E_{0} \exp \left[-\frac{x^{2}+y^{2}}{w^{2}}\right] \exp [i(k z-\omega t)]
$$

Localized wave-fronts

Localized waves in time: pulses

If we can localize the beam in space by multiplying by a
Gaussian in x and y, we can also localize it in time by multiplying by a
 Gaussian in time.
$\underset{\sim}{E}(x, y, z, t)={\underset{\sim}{0}}_{E} \exp \left[-\frac{t^{2}}{\tau^{2}}\right] \exp \left[-\frac{x^{2}+y^{2}}{w^{2}}\right] \exp [i(k z-\omega t)]$

This is the equation for a laser pulse.

Longitudinal vs. Transverse waves

Motion is along the direction of propagation-

Motion is transverse to the direction of propagation-

Space has 3 dimensions, of which 2 are transverse to the propagation direction, so there are 2 transverse waves in addition to the potential longitudinal one.
The direction of the wave's variations is called its

Vector fields

Light is a 3D vector field.
A 3D vector field $\vec{f}(\vec{r})$ assigns a 3D vector (i.e., an arrow having both direction and length) to each point in 3D space.

Wind patterns: 2D vector field

A light wave has both electric and magnetic 3D vector fields:

And it can propagate in any direction.

Div, Grad, Curl, and all that

Types of 3D vector derivatives:

The Del operator: $\quad \vec{\nabla} \equiv\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$

The Gradient of a scalar function f :

$$
\vec{\nabla} f \equiv\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

> div grad an curl informal and ont and vector that thatentus h.iridedition h.m.schey

If you want to know more about vector calculus, read this book!

The gradient points in the direction of steepest ascent.

Div, Grad, Curl, and all that

The Divergence of a vector function:

$$
\vec{\nabla} \cdot \vec{f} \equiv \frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}+\frac{\partial f_{z}}{\partial z}
$$

The Divergence is nonzero if there are sources or sinks.

A 2D source with a large divergence:

Note that the x -component of this function changes rapidly in the x direction, etc., the essence of a large divergence.

Div, Grad, Curl, and more all that

The Laplacian of a scalar function :

$$
\begin{aligned}
\nabla^{2} f \equiv \vec{\nabla} \cdot \vec{\nabla} f & =\vec{\nabla} \cdot\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \\
& =\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{aligned}
$$

The Laplacian of a vector function is the same, but for each component of f :
$\nabla^{2} \vec{f}=\left(\frac{\partial^{2} f_{x}}{\partial x^{2}}+\frac{\partial^{2} f_{x}}{\partial y^{2}}+\frac{\partial^{2} f_{x}}{\partial z^{2}}, \frac{\partial^{2} f_{y}}{\partial x^{2}}+\frac{\partial^{2} f_{y}}{\partial y^{2}}+\frac{\partial^{2} f_{y}}{\partial z^{2}}, \frac{\partial^{2} f_{z}}{\partial x^{2}}+\frac{\partial^{2} f_{z}}{\partial y^{2}}+\frac{\partial^{2} f_{z}}{\partial z^{2}}\right)$
The Laplacian tells us the curvature of a vector function.

The 3D wave equation for the electric field and its solution

A light wave can propagate in any direction in space. So we must allow the space derivative to be 3D:

$$
\vec{\nabla}^{2} E-\mu \varepsilon \frac{\partial^{2} E}{\partial t^{2}}=0
$$

or

$$
\frac{\partial^{2} E}{\partial x^{2}}+\frac{\partial^{2} E}{\partial y^{2}}+\frac{\partial^{2} E}{\partial z^{2}}-\mu \varepsilon \frac{\partial^{2} E}{\partial t^{2}}=0
$$

whose solution is:

$$
\left.E(x, y, z, t)=\operatorname{Re}\left\{\underset{\sim}{E} \operatorname{Exp}_{0} \exp (\vec{k} \cdot \vec{r}-\omega t)\right]\right\}
$$

where

$$
\vec{k} \equiv\left(k_{x}, k_{y}, k_{z}\right) \quad \vec{r} \equiv(x, y, z)
$$

and

$$
\vec{k} \cdot \vec{r} \equiv k_{x} x+k_{y} y+k_{z} z
$$

$$
k^{2} \equiv k_{x}^{2}+k_{y}^{2}+k_{z}^{2}
$$

The 3D wave equation for a light-wave electric field is actually a vector equation.

And a light-wave electric field can point in any direction in space:

$$
\vec{\nabla}^{2} \vec{E}-\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0
$$

Note the arrow over the E.

$$
\text { whose solution is: } \vec{E}(x, y, z, t)=\operatorname{Re}\left\{{\underset{\sim}{\underset{\sim}{E}}}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)]\right\}
$$

where:

$$
{\underset{\sim}{E}}_{0}=\left({\underset{\sim}{E}}_{0 x},{\underset{\sim}{x}}_{0 y},{\underset{\sim}{x}}^{E}\right)
$$

Vector Waves

We must now allow the field E and its complex field amplitude $\underset{\sim}{E} 0$ be vectors:

$$
\vec{E}(\vec{r}, t)=\operatorname{Re}\left\{\stackrel{\rightharpoonup}{E}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)]\right\}
$$

The complex vector amplitude has six numbers that must be specified to completely determine it!

Boundary Conditions

Often, a wave is constrained by external factors, which we call Boundary Conditions.

For example, a guitar string is attached at both ends.

In this case, only certain wavelengths/frequencies are possible.

Here the wavelengths can be:

4

5

$$
\lambda_{1}, \lambda_{1} / 2, \lambda_{1} / 3, \lambda_{1} / 4, \text { etc. }
$$

